

Flow Sensor

FR03

Version: 1.1

Issue Date: 2022.02.16

Zhengzhou Winsen Electronic Technology Co., Ltd

Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc, please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD

1.Profile:

FR03 flow sensor is an upgrading developed from F1013 . It adopts MEMS Thermal principle to monitor the flow of pipeline gas medium. This product adopts low pressure loss design and is widely used for all kinds of gas measurement.

2. Features:

- ♦ High sensitivity;
- ♦ Very low pickup flow;
- ♦ High Accuracy;
- ♦ Low voltage loss;
- ♦ Modular design;
- High measurement repeatability;
- ♦ Suitable for customization of various products

3.Technical Parameters:

3.1Structure Parameters

▼30.5±0.05	▼29.4±0.05 10.4±0.05 ▼17±0.05 ▼34±0.05	Ø3.5±0.05 Ø6±0.05 Ø6±0.05 25±0.05
	1 2 3 4 5	▼15.5±0.05 ▼12.5±0.05 ▼10.5±0.05 3.9±0.06 ▼11.5±0.09

3.2Electrical Index

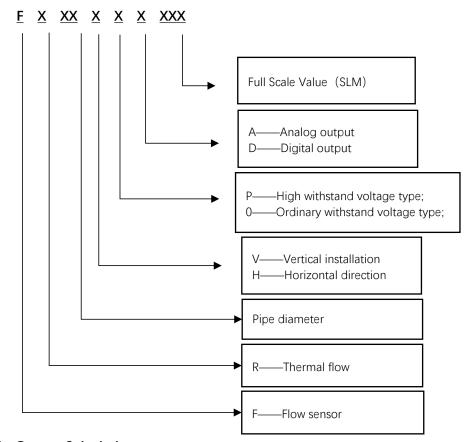
Model No.	FR03
Full Scale(SLM)	0.2/0.3/0.4/0.5
Drift diameter	DN3
Output Mode	Linearity 0.5V ~ 4.5V(Customized)
Output	200Ω
impedance	220022
Working	DC5V ~ 14V
Voltage	DC3V ** 14V
Working	≤10mA
Current	≈10IIIV
Accuracy	±(2+0.5FS)%
Repeatability	0.50%

Output Drift	0.12%/℃					
△Pmax	≤600Pa					
Working	Customized					
Pressure						
Working	0℃ ~ 50℃					
Temperature						
Storage	-20°C ~ 80°C					
Temperature				0 C		
Measurement						
Medium	Dry and clean non-corrosive gas					
Electrical	2.5/mm	-5P PIN or I	OH2 0_5D T	erminal (O	Ontional)	
interface	2.54mm-5P PIN or PH2.0-5P Terminal (Optional)			ptionary		
Calibration	Air Calibration (20°C、101.325kPa)					
mode				<i>'</i>		
PIN Definition	1	2	3	4	5	
FIIN DellIIIIIIIIII			GND	VCC	OUT	

3.2 Calibration

The flow sensor of our company adopts standard condition and air calibration by default. If the user has special requirements, calibrate according to the customer's requirements.

3.2.1 Standard Condition:


Temperature :0°C, Air Pressure: 101.325kPa

SCCM: Standard mL/min SLM: Standard L/min

3.2.2Manufacture Environment:

Manufactured and calibrated in environment with temperature of $22\pm2^{\circ}$ C,Purify and $(30\% \sim 35\%)$ RH.

4.Naming Rules

5. Output Calculation

Actual flow=full scale * (sensor actual output voltage-zero output voltage) / (full scale output voltage-zero output voltage)

For example: the sensor full scale is 0.5 SLM, the sensor zero output voltage is 1V and full scale output voltage is 5V, and the actual output is 2.5V.

Then the actual flow=0.5 SLM * (2.5V - 1V)/(5V - 1V) = 0.1875SLM

6.Cautions

- 6.1 The gas used must be purified to avoid dust, liquid and oil stain. If necessary, a filtering device can be installed in the gas circuit.
- 6.2 The medium used must be dry and clean non-corrosive gas.
- 6.3 The pressure of the medium used shall not exceed 1.2 times of the maximum working pressure of the product.
- 6.4 In order to ensure the measurement accuracy of the sensor, it is recommended to install a straight pipe section at least 5 times the nominal diameter at the inlet of the sensor and at least 3 times the nominal diameter at the outlet.

7.Fault Diagnosis

7.1 Preliminary inspection

- 7.1.1 Check the opening of air source and inlet.
- 7.1.2 Ensure the correct connection of communication lines.
- 7.1.3 Check whether the medium pressure and ambient temperature meet the product technical indicators.

7.2 Fault Check

No.	Symptoms	Possible	Solutions	
		Causes		
	No signal output in	Sensor	Return for Maintenance	
	case of no ventilation	damage		
1	Output 10-12v without ventilation	Reverse	Check whether the	
		terminal	terminal is inserted	
	ventilation	insertion	correctly	
	Without ventilation,		Zero Point Calibration/	
2	the output deviation at	Zero Point Drift	Return for Maintenance	
	zero point exceeds the		Return for Maintenance	

	maximum tolerance		
	No signal output	Reversed air	Replace the installation
3	No signal output during ventilation	inlet installation	direction
	during ventilation	Sensor damage	Return for maintenance
		Output Drift	Return for maintenance
4	Flow out of tolerance	Incorrect	Use mass flow method
4	during ventilation	reference	or higher accuracy flow
		standard	meters for testing

8. Disclaimer

Our company is not responsible for the damage caused by the following circumstances:

- Natural disasters.
- Misoperation or unreasonable use.
- Operate or store in unsuitable or harsh environment.
- Unauthorized modification or disassembly of products.
- Violent means lead to product damage.

9. Appendix

Target gas flow = Sensor Reading Value \times Conversion coefficient

Target Gas	Code (SEMI52-0 302)	Specific Heat (calorie/gram℃)	Density (gram/L0℃)	Conversion coefficient
Не	001	1.242	0.179	1.420
Ne	002	0.246	0.900	1.431
Ar	004	0.125	1.784	1.420
Xe	006	0.038	5.858	1.431
H ₂	007	3.422	0.090	1.010
Air	800	0.240	1.293	1.001
СО	009	0.249	1.250	1.000
HBr	010	0.086	3.610	0.999
HCI	011	0.191	1.627	0.988

HF 012 0.348 0.893 1.001 N₂ 013 0.249 1.25 1.000 O₂ 015 0.220 1.427 0.981 NO 016 0.238 1.339 0.978 F₂ 018 0.197 1.695 0.931 Cl₂ 019 0.115 3.163 0.858 H₂S 022 0.228 1.520 0.802 CO₂ 025 0.202 1.964 0.739 NO₂ 026 0.192 2.052 0.737 CH₄ 028 0.532 0.715 0.722 NH₃ 029 0.501 0.760 0.719 SO₂ 032 0.149 2.858 0.687 AsH₃ 035 0.117 3.478 0.673 C₂H₄ 038 0.366 1.251 0.597 C₂H₄ 038 0.366 1.251 0.596 BF₃ 048 0.178 3.025	. 				
O₂ 015 0.220 1.427 0.981 NO 016 0.238 1.339 0.978 F₂ 018 0.197 1.695 0.931 Cl₂ 019 0.115 3.163 0.858 H₂S 022 0.228 1.520 0.802 CO₂ 025 0.202 1.964 0.739 NO₂ 026 0.192 2.052 0.737 CH₄ 028 0.532 0.715 0.722 NH₃ 029 0.501 0.760 0.719 SO₂ 032 0.149 2.858 0.687 AsH₃ 0.35 0.117 3.478 0.673 C₂H₄ 038 0.366 1.251 0.597 C₂H₂ 042 0.405 1.162 0.596 BF₃ 048 0.178 3.025 0.508 C₂H₆ 054 0.424 1.342 0.482 B₂H₆ 058 0.502 1.23	HF	012	0.348	0.893	1.001
NO 016 0.238 1.339 0.978 F₂ 018 0.197 1.695 0.931 Cl₂ 019 0.115 3.163 0.858 H₂S 022 0.228 1.520 0.802 CO₂ 025 0.202 1.964 0.739 NO₂ 026 0.192 2.052 0.737 CH₄ 028 0.532 0.715 0.722 NH₃ 029 0.501 0.760 0.719 SO₂ 032 0.149 2.858 0.687 AsH₃ 035 0.117 3.478 0.673 C₂H₄ 038 0.366 1.251 0.597 C₂H₂ 042 0.405 1.162 0.596 BF₃ 048 0.178 3.025 0.508 C₂H₆ 054 0.424 1.342 0.482 B₂H₆ 058 0.502 1.235 0.441 CF₄ 063 0.166 3.96	N ₂	013	0.249	1.25	1.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O ₂	015	0.220	1.427	0.981
Cl ₂ 019 0.115 3.163 0.858 H ₂ S 022 0.228 1.520 0.802 CO ₂ 025 0.202 1.964 0.739 NO ₂ 026 0.192 2.052 0.737 CH ₄ 028 0.532 0.715 0.722 NH ₃ 029 0.501 0.760 0.719 SO ₂ 032 0.149 2.858 0.687 AsH ₃ 035 0.117 3.478 0.673 C ₂ H ₄ 038 0.366 1.251 0.597 C ₂ H ₂ 042 0.405 1.162 0.596 BF ₃ 048 0.178 3.025 0.508 C ₂ H ₆ 054 0.424 1.342 0.482 B ₂ H ₆ 058 0.502 1.235 0.441 CF ₄ 063 0.166 3.964 0.420 C ₃ H ₄ 068 0.363 1.787 0.411 C ₃ H ₆ 0	NO	016	0.238	1.339	0.978
H₂S 022 0.228 1.520 0.802 CO₂ 025 0.202 1.964 0.739 NO₂ 026 0.192 2.052 0.737 CH₄ 028 0.532 0.715 0.722 NH₃ 029 0.501 0.760 0.719 SO₂ 032 0.149 2.858 0.687 AsH₃ 035 0.117 3.478 0.673 C₂H₄ 038 0.366 1.251 0.597 C₂H₂ 042 0.405 1.162 0.596 BF₃ 048 0.178 3.025 0.508 C₂H₆ 054 0.424 1.342 0.482 B₂H₆ 058 0.502 1.235 0.441 Cf₄ 063 0.166 3.964 0.420 C₃H₆ 069 0.366 1.877 0.411 C₃H₆ 069 0.366 1.877 0.411 C₃H₆ 093 0.352 <td< td=""><td>F₂</td><td>018</td><td>0.197</td><td>1.695</td><td>0.931</td></td<>	F ₂	018	0.197	1.695	0.931
CO2 025 0.202 1.964 0.739 NO2 026 0.192 2.052 0.737 CH4 028 0.532 0.715 0.722 NH3 029 0.501 0.760 0.719 SO2 032 0.149 2.858 0.687 AsH3 035 0.117 3.478 0.673 C2H4 038 0.366 1.251 0.597 C2H2 042 0.405 1.162 0.596 BF3 048 0.178 3.025 0.508 C2H6 054 0.424 1.342 0.482 B2H6 058 0.502 1.235 0.441 CF4 063 0.166 3.964 0.420 C3H4 068 0.363 1.787 0.421 C3H6 069 0.366 1.877 0.411 C3H8 089 0.399 1.967 0.358 C4H6 093 0.352 <td< td=""><td>Cl₂</td><td>019</td><td>0.115</td><td>3.163</td><td>0.858</td></td<>	Cl ₂	019	0.115	3.163	0.858
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₂ S	022	0.228	1.520	0.802
CH ₄ 028 0.532 0.715 0.722 NH ₃ 029 0.501 0.760 0.719 SO ₂ 032 0.149 2.858 0.687 AsH ₃ 035 0.117 3.478 0.673 C ₂ H ₄ 038 0.366 1.251 0.597 C ₂ H ₂ 042 0.405 1.162 0.596 BF ₃ 048 0.178 3.025 0.508 C ₂ H ₆ 054 0.424 1.342 0.482 B ₂ H ₆ 058 0.502 1.235 0.441 CF ₄ 063 0.166 3.964 0.420 C ₃ H ₄ 068 0.363 1.787 0.421 C ₃ H ₆ 069 0.366 1.877 0.411 C ₃ H ₈ 089 0.399 1.967 0.358 C ₄ H ₆ 093 0.352 2.413 0.322 CCI ₄ 101 0.130 6.860 0.306 C ₄ H ₈	CO ₂	025	0.202	1.964	0.739
NH₃ 029 0.501 0.760 0.719 SO₂ 032 0.149 2.858 0.687 AsH₃ 035 0.117 3.478 0.673 C₂H₄ 038 0.366 1.251 0.597 C₂H₂ 042 0.405 1.162 0.596 BF₃ 048 0.178 3.025 0.508 C₂H₆ 054 0.424 1.342 0.482 B₂H₆ 058 0.502 1.235 0.441 CF₄ 063 0.166 3.964 0.420 C₃H₄ 068 0.363 1.787 0.421 C₃H₆ 069 0.366 1.877 0.411 C₃H₆ 093 0.352 2.413 0.322 CCI₄ 101 0.130 6.860 0.306 C₄H₆ 093 0.372 2.503 0.299 C₄H₆ 136 0.340 2.055 0.392 CH₃O 176 0.328 1.430 0.584	NO ₂	026	0.192	2.052	0.737
SO2 032 0.149 2.858 0.687 AsH3 035 0.117 3.478 0.673 C2H4 038 0.366 1.251 0.597 C2H2 042 0.405 1.162 0.596 BF3 048 0.178 3.025 0.508 C2H6 054 0.424 1.342 0.482 B2H6 058 0.502 1.235 0.441 CF4 063 0.166 3.964 0.420 C3H4 068 0.363 1.787 0.421 C3H6 069 0.366 1.877 0.411 C3H8 089 0.399 1.967 0.358 C4H6 093 0.352 2.413 0.322 CCI4 101 0.130 6.860 0.306 C4H8 104 0.372 2.503 0.299 C4H10 117 0.404 2.650 0.261 C2H6 136 0.340	CH ₄	028	0.532	0.715	0.722
AsH3 035 0.117 3.478 0.673 C2H4 038 0.366 1.251 0.597 C2H2 042 0.405 1.162 0.596 BF3 048 0.178 3.025 0.508 C2H6 054 0.424 1.342 0.482 B2H6 058 0.502 1.235 0.441 CF4 063 0.166 3.964 0.420 C3H4 068 0.363 1.787 0.421 C3H6 069 0.366 1.877 0.411 C3H8 089 0.399 1.967 0.358 C4H6 093 0.352 2.413 0.322 CCI4 101 0.130 6.860 0.306 C4H8 104 0.372 2.503 0.299 C4H10 117 0.404 2.650 0.261 C2H6 136 0.340 2.055 0.392 CH3O 176 0.328 1.430 0.584	NH ₃	029	0.501	0.760	0.719
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO ₂	032	0.149	2.858	0.687
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AsH₃	035	0.117	3.478	0.673
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₂ H ₄	038	0.366	1.251	0.597
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₂ H ₂	042	0.405	1.162	0.596
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BF ₃	048	0.178	3.025	0.508
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₂ H ₆	054	0.424	1.342	0.482
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B ₂ H ₆	058	0.502	1.235	0.441
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF ₄	063	0.166	3.964	0.420
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₃ H ₄	068	0.363	1.787	0.421
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₃ H ₆	069	0.366	1.877	0.411
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₃ H ₈	089	0.399	1.967	0.358
C_4H_8 104 0.372 2.503 0.299 C_4H_{10} 117 0.404 2.650 0.261 C_2H_6 136 0.340 2.055 0.392 CH_3O 176 0.328 1.430 0.584	C ₄ H ₆	093	0.352	2.413	0.322
C_4H_{10} 117 0.404 2.650 0.261 C_2H_6 136 0.340 2.055 0.392 CH_3O 176 0.328 1.430 0.584	CCI ₄	101	0.130	6.860	0.306
C2H6 136 0.340 2.055 0.392 CH3O 176 0.328 1.430 0.584	C ₄ H ₈	104	0.372	2.503	0.299
CH ₃ O 176 0.328 1.430 0.584	C ₄ H ₁₀	117	0.404	2.650	0.261
	C ₂ H ₆	136	0.340	2.055	0.392
C ₅ H ₁₂ 240 0.392 3.219 0.217	CH ₃ O	176	0.328	1.430	0.584
	C ₅ H ₁₂	240	0.392	3.219	0.217